23rd Spring Congress of Korean Diabetes Association 08.MAY. 2010

Risk factor for type 2 diabetes in Korea : Is Korean a high risk population for type 2 diabetes?

Dong-Hyeok, Cho

Chonnam National University Hospital Dept. of Internal Medicine, Div. of Endocrinology & Metabolism

그림. 당뇨병 유병률 추이

* 당뇨병 유병률 : 공복혈당이 126 mg/dL 이상이거나 의사진단을 받았거나 혈당강하제 복용 또는 인슐린 주사를 투여 받고 있는 분율, 만30세 이상

Choi YJ, et al. Diabetes Res Clin Pract. 74(3):295-300, 2006

Trends of diabetes-related mortality in South Korea

Rapidly increasing diabetes-related mortality with socioenvironmental changes in South Korea during the last two

Re-analyzed the annual reports on mortality in S. Korea by KNSO from 1983 to 2001

Age-adjusted diabetes-related mortality rates of South Korea, Japan, UK & USA

Year	South Korea	Japan	UK	USA
1985	10.8 (1.00)	7.9 (1.00)	10.3 (1.00)	14.3 (1.00)
1986	11.1 (1.02)	7.5 (0.94)	10.8 (1.04)	14.1 (0.98)
1987	11.2 (1.03)	7.3 (0.92)	10.3 (1.00)	14.4 (1.01)
1988	10.8 (1.00)	7.4 (0.93)	10.3 (1.00)	14.8 (1.03)
1989	13.7 (1.26)	6.8 (0.86)	10.3 (1.00)	16.9 (1.18)
1990	16.6 (1.53)	6.7 (0.84)	10.1 (0.98)	17.1 (1.19)
1991	17.8 (1.64)	6.6 (0.83)	10.1 (0.98)	17.2 (1.20)
1992	21.2 (1.96)	6.5 (0.82)	10.0 (0.97)	17.3 (1.21)
1993	27.3 (2.52)	6.5 (0.82)	8.0 (0.77)	18.2 (1.27)
1994	28.9 (2.67)	6.7 (0.84)	7.6 (0.73)	18.9 (1.32)
1995	28.8 (2.66)	8.4 (1.06)	7.8 (0.75)	19.5 (1.36)
1996	28.3 (2.62)	7.3 (0.92)	7.5 (0.72)	20.0 (1.39)
1997	29.7 (2.75)	6.8 (0.86)	7.3 (0.70)	19.9 (1.39)
1998	32.8 (3.03)	6.7 (0.84)	7.3 (0.70)	20.1 (1.40)
1999	33.4 (3.09)	6.6 (0.83)	7.5 (0.72)	_
2000	33.7 (3.12)	6.1 (0.77)	7.5 (0.72)	_

Table. Age-adjusted diabetes-related mortality rates of South Korea, Japan, the United Kingdom and the United States (1985–2000)

Data shown as death rate per 100,000 persons of each year (fold increase from 1985).

Choi YJ, et al. Diabetes Res Clin Pract. 74(3):295-300, 2006

Risk factors for type 2 diabetes

Table. Risk factors for type 2 diabetes

Age ≥45 years

Overweight (BMI $\geq 25 \text{ kg/m}^2$)

Family history of diabetes (i.e., parents or siblings with diabetes)

Habitual physical inactivity

Race/ethnicity (e.g., African-Americans, Hispanic-Americans, Native Americans, Asian-Americans, and Pacific Islanders)

Previously identified IFG or IGT (A1C \geq 5.7%)

History of GDM or delivery of a baby weighing >9 lbs

Hypertension (≥140/90 mmHg in adults)

HDL cholesterol ≤35 mg/dL and/or a triglyceride level ≥250 mg/dL

Polycystic ovary syndrome

History of vascular disease

인슐린비의존형 당뇨병의 위험인자 분석

- 연천지역사회 2개읍, 8개면 전지역을 대상으로 무작위 집단표본조사 실시
- 표본의 크기는 표본조사 대상인 26,927예 중 약 13%에 해당하는 3,804예

Table. Risk factors of Diabetes Mellitus.

단변량 분석	성별(남>여)	남: 8.7%, 여: 7.2%	X ² =14.6, p<0.001
	비만도	체질량지수 증가	X ² =9.6, p<0.01
	도시화 정도	도시화	X ² =6.3, p<0.05
	활동도	직업상 활동도 증가	X ² =11.4, p<0.01
	가족력	당뇨병 가족력 1인 이상	X ² =14.1, p<0.001
다변량 분석	WHR		3.82 (1.38-10.62)
	혈청 중성지병	방 농도	2.02 (1.41-2.89)
	연령		3.27 (1.65-6.48)
	당뇨병의 가족	족력	2.1 (1.34-3.34)
	수축기 혈압		1.69 (1.01-2.83)
	도시화 정도		1.56 (1.15-2.12)

박용수 등. 당뇨병 20(1): 14-24, 1996

Risk factors

the InterASIA Study in the Chinese adult population

Risk factors for type 2 diabetes mellitus in the Chinese adult

Population Anationally representative sample of 15,236 Chinese adults aged 35-74 years

Risk factors		Men	W	omen	Risk factors Men		en	Women		
	OR	95% CI	OR	95% CI		OR	95	5% CI	OR	95% CI
Family history of diabetes					BMI (kg/m²) ^b					
No	1	-	1	-	<24		1	-	1	-
Yes	5.87	4.14-8.31	4.79	3.55–6.48	24–27		1.22	0.93–1.61	1.74	1.33–2.28
Physical activity (METS) ^a					≥28	1	2.49	1.76–3.53	2.70	1.93–3.77
<28.2	1	-	1	-	WC (cm) ^b					
28.2–52.0	0.56	0.42-0.73	0.57	0.44-0.74	Men < 85 (women < 80)		1	-	1	-
≥52.1	0.58	0.41-0.81	0.47	0.33-0.68	Men \geq 85 (women \geq 80)		1.85	1.45–2.38	2.76	2.15-3.54
TC (mg/dl)					WHR ^c					
<200	1	-	1	-	Men < 0.83 (women < 0.78)		1	-	1	-
200–239	1.34	1.00-1.80	2.03	1.54-2.69	Men 0.83–0.91 (women 0.78–0.8	6) 1	1.60	1.11-2.30	1.76	1.17–2.64
≥240	2.93	2.08-4.14	4.37	3.18-6.01	Men \geq 0.92 (women \geq 0.87)	1	2.95	2.04-4.26	4.42	2.94-6.65
LDL-C (mg/dl)					Hypertension					
<130	1	-	1	-	No		1	-	1	-
130–159	1.41	1.00-1.98	1.84	1.35-2.45	Yes		1.54	1.19–1.98	3.13	2.45-4.00
≥160	2.83	1.96-4.08	3.79	2.70-5.31	Smoking					
HDL-C (mg/dl)					Never		1	-	1	-
<40	1	_	1	_	Current	(0.75	0.56-0.99	0.59	0.33-1.04
40-59	0.53	0.40-0.70	0.47	0.35-0.62	Former		1.41	0.96-2.07	0.97	0.48–1.97
≥60	0.42	0.28-0.62	0.43	0.30-0.62	Drinking (only for men)					
TC (mg/dl)					Never	:	1	-	-	-
<150	1	_	1	_	Light		1.20	0.91–1.58	-	-
150-199	1.77	1.23-2.56	2.66	1.93-3.65	Heavy	(0.71	0.50-1.02	-	-
>200	2.89	2.16-3.88	3.63	2.73-4.84						
-					Hu D. et al. Diabetes	Res	Clin	Pract. 84(3	31:288-9	95.2009

Obesity as a risk factor for non-insulin-dependent diabetes mellitus in Korea Reviewed the medical records of final cohort of 2,531 subjects.

• Follow-up revealed 117 cases with DM with an incident of 7.8 per 1,000 person-years.

Table. Adjusted relative risk and 95% confidence interval for NIDDM among a cohort of 1,551 men and 980 women.

		Men			Women	
Risk Factors	Relative Risk	95% confidence interval	p-value*	Relative Risk	95% confidence interval	<i>p</i> -value*
Age (5 yr increase)	1.35	1.21-1.49	0.001	1.29	1.17-1.43	0.016
Family history of diabetes						
Absent	1.0			1.0		
Present	3.02	1.93-4.73	0.001	0.84	0.35-2.05	0.703
Total smoking amount (pack-years))					
None	1.0			1.0		
< 30	1.59	0.87-2.91	0.129	3.21	1.28-8.29	0.013
≥30	2.09	1.08-4.63	0.029	3.91	11.24-12.35	0.020
		ļ.	for trend=0.018			p for trend=0.015
Body mass index (kg/m²)						
< 23.0	1.0			1.0		
23.0 - 24.9	0.85	0.47-1.50	0.569	9.14	1.99-41.8	0.004
25.0 - 26.9	1.29	0.72-2.31	0.395	7.36	1.47-36.8	0.015
≥27.0	3.38	1.22-4.63	0.010	14.5	3.03-69.2	0.001
		ļ.	o for trend=0.005			p for trend=0.005
Education						
Middle school	1.0			1.0		
High school	1.45	0.71-2.94	0.304	0.65	0.26-1.60	0.347
College or postgraduate	0.93	0.48-1.81	0.839	0.35	0.11-1.10	0.073
						p for trend=0.150

*Using Cox proportional hazards model. All risk factors above are used as covariates

Sung EJ, et al. J Korean Med Sci. 16(4):391-6, 2001

Cut-off point of BMI and obesity-related comorbidities and mortality in middle-aged Koreans

• Cohort study among 773,915 men and women from 30 to 59 years old with 8-10 year F/U.

Fig. Multivariate RRs of diabetes occurrences during 8year F/U period according to BMI.

Table. BMI in 1992 and age-adjusted diabetes incidence rates during 8-year F/U period.

	Men		Women				
	Diabetes		Diabetes	,			
	Cases/		Cases/				
BMI*	person-years	IR†	person-years	IR†			
<18.5	621/111,720	5.7	133/112,386	1.3			
18.5	1229/229,842	5.6	151/121,312	1.4			
20	2440/421,048	6.1	237/153,740	1.6			
21	3708/552,594	6.8	266/144,444	1.9			
22	5282/628,874	8.4	351/130,510	2.6			
23	6467/654,074	9.8	321/96,770	3.1			
24	7072/603,940	11.5	341/70,036	4.7			
25	6232/452,170	13.6	231/37,976	5.5			
26	4397/278,228	15.6	180/23,854	6.6			
27	2919/159,442	18.1	125/12,108	10.4			
28	1666/79,516	20.8	90/7230	14.0			
29	976/42,778	22.6	50/3768	12.0			
30	495/18,518	26.5	64/3892	17.1			
31	227/8302	27.3					
32	107/3400	31.5	+ Age-adjust	ted incidence rate			
33	52/1342	38.5	per 1.000 pe	erson-vears.			
≥34	65/1444	45.5	: _) • • • • •	,			
	— Oh SW, ei	t al. O	bes Res. 12(12):2031-40, 2004			

Waist circumference in South Korea

Waist circumference is the key risk factor for diabetes in Korean women with history of GDM

- 909 women with history of GDM were enrolled.
- During postpartum follow-up period, mean 2.13+/-1.75 years

Table. Odds ratio of diabetes by obesity parameters between the highest and the lowest quartiles^a.

	OR ^a	95% CI	р
Suprailiac skin fold thickness	2.10 (2.6)	1.2–3.7	< 0.05
Tricep skin fold thickness	2.02 (2.6)	1.1–3.6	< 0.05
Waist/hip ratio	3.11 (4.4)	1.7–5.6	< 0.001
Body fat weight	3.76 (4.4)	1.8–7.6	< 0.001
Body mass index	3.34 (4.4)	1.7–6.5	< 0.001
Subscapular skin fold thickness	2.82 (4.5)	1.4–5.6	< 0.01
Body weight	3.06 (4.6)	1.6-6.0	0.001
Waist circumference	3.86 (5.8)	1.8 - 8.2	< 0.001

^a Odds ratio was calculated using the logistic regression analysis. The potential confounders, such as BP, lipid profiles, age, duration of follow-up, parity, F/H of DM, and working status were included in the model as an independent variable to be controlled its effect. OR in parenthesis are the values before multiple adjustment.

Cho NH, Jang HC, Park HK, Cho YW. Diabetes Res Clin Pract. 71(2):177-83, 2006

Duration of obesity

Weight change and duration of overweight and obesity in the incidence of T2DM in men aged 40-59 years at screening.

Table. Risk of diabetes by BMI at Q5 and duration of overweight and obesity.

BMI at Q5	п	Cases of diabetes	Rate per 1,000 person-years	Age-adusted RR	Adjusted RR (95% CI)
<25	2,386	34	1.3	1.00	1.00
25-27.9					
<5 years	623	17	2.5	1.80	1.74 (0.96–3.15)
≥5 years	1,541	50	3.0	2.17	2.25 (1.45–3.47)
28–29.9					
<5 years	408	18	4.0	2.91	2.68 (1.50-4.81)
≥5 years	553	39	6.7	4.87	4.74 (2.99–7.51)
≥30					
<5 years	48	3	6.5	4.92	4.36 (1.33–14.28)
≥5 years	355	42	11.8	8.66	8.04 (5.06–12.74)

*Adjusted for age, smoking status at Q5, physical activity, and recall of CHD and hypertension. Men who have lost weight (\geq 4%) have been excluded (*n* = 937).

Wannamethee SG, Shaper AG. Diabetes Care. 22(8):1266-72, 1999

Abdominal adiposity Health Professionals Follow-Up Study in US

Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men.

- A prospective cohort study of 27,270 men.
- During 13 yr of follow-up, 884 incident T2DM cases.

Obesity a follow-up study in a Japanese population

Increases in BMI, even within non-obese levels, raise the risk for

 T2DM A follow-up study in 16,829 men and 8,370 women who were apparently healthy at baseline (age 30-59 years, BMI 14.9-43.2 kg/m²).

Table. Incidence of DM and hazard ratio for incident DM according to deciles of BMI in Japanese men aged 30–59 years

					Incident diabetes mellitus		Hazard ratio (95% confidence interval)		
Deciles of BMI, kg/m ²	Baseline <i>n</i>	Person years	Mean follow-up years	Mean follow-up examinations	n	per 1000 person years	Crude	Multivariate adjusted†	
Men									
1st, 15.0–19.7	1700	12883	7.6	6.0	27	2.1	1.00 (reference)	1.00 (reference)	
2nd, 19.8–20.8	1760	13273	7.5	5.9	44	3.3	1.57 (0.97, 2.53)	1.55 (0.96, 2.50)	
3rd, 20.9-21.6	1660	12519	7.5	5.8	40	3.2	1.52 (0.93, 2.47)	1.56 (0.96, 2.54)	
4th, 21.7-22.3	1660	12527	7.5	5.9	50	4.0	1.89 (1.18, 3.01)**	1.85 (1.16, 2.95)*	
5th, 22.4-22.9	1610	11950	7.4	5.7	62	5.2	2.47 (1.57, 3.88)***	2.46 (1.56, 3.86)***	
6th, 23.0-23.6	1708	12656	7.4	5.8	77	6.1	2.91 (1.88, 4.52)***	2.91 (1.88, 4.52)***	
7th, 23.7-24.3	1738	12683	7.3	5.7	108	8.5	4.10 (2.69, 6.26)***	4.07 (2.66, 6.21)***	
8th, 24.4-25.1	1596	11802	7.4	5.8	99	8.4	4.01 (2.62, 6.14)***	3.98 (2.60, 6.10)***	
9th, 25.2-26.3	1693	12501	7.4	5.8	145	11.6	5.56 (3.69, 8.39)***	5.55 (3.67, 8.38)***	
10th, 26.4-38.5	1704	12320	7.2	5.6	217	17.6	8.55 (5.73, 12.8)***	8.68 (5.81, 13.0)***	
Trend for BMI (per 1 kg/m ²)							1.26 (1.23, 1.28)***	1.26 (1.24, 1.29)***	
Trend for age (per 1 year)							1.04 (1.03, 1.05)***	1.04 (1.03, 1.05)***‡	

Nagaya T, et al. Diabet Med. 22(8):1107-11, 2005

Waist circumference

an 8-year follow-up of relatively lean Japanese individuals

J-shaped relationship between WC and subsequent risk for

T2DM • 3,992 employees (2,533 men & 1,459 women, aged 35-55 yrs) of a metal-products factory in Japan

Table. Age- and sex-adjusted and multivariate-adjusted hazard ratios for the incidence of T2DM according to sex-specific quintile of WC.

Waist circumference quintile					
Parameter	Q1	Q2	Q3	Q4	Q5
Range of waist circumference, men (cm)	51.0-73.0	73.5-78.0	78.5-82.0	82.5-86.0	86.5-110.0
Range of waist circumference, women (cm)	54.0-65.0	65.5-69.0	69.5-73.5	74.0-80.0	80.5-120.0
Participants (n)	852	803	820	765	752
Age (years)	43.7 ± 5.7	44.3 ± 5.7	44.4 ± 5.9	44.7 ± 5.8	45.0 ± 5.9
Fasting plasma glucose (mmol/l)	4.9 ± 0.49	4.9 ± 0.46	5.0 ± 0.46	5.1 ± 0.52	5.1 ± 0.49
Family history of diabetes (%)	10.7	11.7	13.3	10.2	13.8
Prevalence of high blood pressure† (%)	21.5	24.8	28.4	35.6	38.7
Prevalence of dyslipidaemia ⁺ (%)	7.9	14.8	21.5	26.0	38.7
Total person-years	6143	5787	5689	5242	5000
Incident cases (n)	39	23	34	58	64
Rate per 1000 person-years	6.3	4.0	6.0	11.1	12.8
Adjusted hazard ratio (95% CI) (Model 1)	1.78 (1.06-2.98)	1.00 (reference)	1.59 (0.94-2.71)	3.11 (1.92-5.04)	3.30 (2.05-5.31)
Adjusted hazard ratio (95% CI) (Model 2)	1.81 (1.08-3.04)	1.00 (reference)	1.62 (0.95-2.76)	3.27 (2.01-5.31)	3.37 (2.09-5.43)
Adjusted hazard ratio (95% CI) (Model 3)	1.90 (1.13-3.19)	1.00 (reference)	1.50 (0.88-2.56)	2.82 (1.73-4.61)	2.72 (1.67-4.42)
Adjusted hazard ratio (95% CI) (Model 4)	1.62 (0.96–2.72)	1.00 (reference)	1.18 (0.69-2.01)	2.10 (1.28-3.46)	2.03 (1.24-3.33)

Sakurai M, et al. Diabet Med. 26(8):753-9, 2009

Abdominal adiposity

International Day for the Evaluation of Abdominal Obesity (IDEA) in 63 countries

A study of WC, CVD, and DM in 168,000 primary care patients in 63 countries Randomly chosen primary care physicians in 63 countries recruited consecutive patients aged 18 to 80 years (69,409 men and 98,750 women).

Fig. **Frequency of known diabetes mellitus** for men and women, adjusted for age, region, and smoking status, by gender-specific WC tertiles and BMI categories. The percentage of patients in each of the 9 groups is shown.

Balkau B, et al. Circulation. 116(17):1942-51, 2007

Obesity the People's Republic of China Study & the Atherosclerosis Risk in Communities Study.

Impact of BMI on DM in Chinese Asians, American Whites, and

- American Blacks Compared the associations with BMI in Chinese Asians (n=5,980), American Whites (n=10,776), and American Blacks (n=3,582)
- Using prospective data from the People's Republic of China Study (1983-1994) and the Atherosclerosis Risk in Communities Study (1987-1998).

Abdominal adiposity

Fig. Age-standardized frequency of overweight (BMI 25-

 30 kg/m^2) and obese (BMI $\geq 30 \text{ kg/m}^2$) subjects by region

in men.

International Day for the Evaluation of Abdominal Obesity (IDEA) in 63 countries

A study of WC, CVD, and DM in 168,000 primary care patients in 63 countries recruited consecutive patients aged 18 to 80 years (69,409 men and 98,750 women).

Fig. Age-standardized frequencies of DM by region in men and women.

Balkau B, et al. Circulation. 116(17):1942-51, 2007

Table. Comparison of prevalence rates of diabetes in selected countries between 1970–1989 and 1990–2005.

Table International comparison of prevalence of adult obesity and diabetes.

Yoon KH, et al. Lancet. 368(9548):1681-8, 2006

그림. 연령별 당뇨병 유병률

* 당뇨병 유병률 : 공복혈당이 126 mg/dL 이상이거나 의사진단을 받았거나 혈당강하제 복용 또는 인슐린 주사를 투여 받고 있는 분율, 만30세 이상

Age & Family history The 2001 Korean national health and nutrition examination survey

Risk factors of type 2 diabetes among Korean adults

Data of 5,132 adults aged 20-85 were used from the 2001 Korean Health and Nutrition **Examination Survey**

Prodict	or Variables	Odds Ratio (95% Confidence Interval)						
Fiedice		Model 1	Model 2	Model 3				
Age	20-39 yrs	1.00		1.00				
	40-59 yrs	3.12 (1.95, 5.00)		2.19 (1.56, 3.08)				
	60 yrs +	4.67 (2.80, 7.78)		4.05 (2.76, 5.95)				
Education	high school or more	1.00		1.00				
	less than high school	1.45 (1.11, 1.90)		1.41 (1.08, 1.84)				
Gender	male	1.00						
	female	0.89 (0.52, 1.52)						
WC	normal		1.00	1.00				
	high		3.44 (2.57, 4.62)	2.24 (1.79, 2.82)				
MAR	low		1.00					
	high		1.31 (1.05, 1.63)					
Ever Smoking	no		1.00	1.00				
	yes		1.69 (1.26, 2.26)	1.34 (1.06, 1.67)				
Family History of Diabetes	no		1.00	1.00				
	yes		1.60 (1.17, 2.19)	1.99 (1.44, 2.74)				

Table. Multivariate Logistic Regression Determinants of T2DM Status

Chung HR, Pérez-Escamilla R. Nutr Res Pract. 3(4):286-94, 2009

Risk of DM in siblings of index cases with T2DM: implications for Patients diagnosed at ages 35-59 years (n=563) to obtain information on the occurrence of diabetes in their relatives, particularly siblings (n=1,675).

Table. Estimates of the diabetes recurrence-risk ratio in siblings (λ_s) or offspring (λ_o) of index cases with diabetes in four US studies according to parental history of diabetes.

			Reference risk from NHANES III	Parental history	of diabetes			
Authors	Number of siblings or offspring	Mean age*		No diabetic parent, λ (%)	One diabetic parent, λ (%)	Two diabetic parents, λ (%)	Standardized† estimate, λ _S	
Estimates based on t	prevalence							
Klein <i>et al.</i> [11]	3 965	68	11.3	0.9 (10.4)	1.6 (17.8)	2.2 (25.2)	1.2	
Karter et al. [12]	25 659	59	9.5	0.8 (7.8)	1.8 (17.2)	2.8 (26.5)	1.2	
Meigs et al. (13)‡	2 527	54	7.6	_	2.2 (16.5)	3.4 (26.2)	_	
Current study	1 348	60	9.5	1.2 (11.2)	2.5 (21.4)	4.0 (34.5)	1.6	
Estimates based on a	cumulative risk							
Current study	1 657	65	11.3	1.2 (14.0)	2.6 (29.2)	3.7 (41.9)	1.8	

*For the studies by Klein et al. and Karter et al. the average age of siblings was assumed to be the same as index cases.

†Standardized by the direct method to the distribution of parental history of diabetes in the study by Klein et al.

 \pm Estimates of λ_0 are shown for the offspring of affected parents. The prevalence of diabetes in offspring with no diabetic parent was 6.1% (ratio to reference risk = 0.8).

Family history the Chin-Shan Community Cardiovascular Cohort Study in Chinese

Sibling and parental history in type 2 diabetes risk among ethnic Chinese Among 2,960 participants free from baseline DM through the Chin-Shan Community Cardiovascular Cohort Study, there were 548 cases that developed DM after a median 9 yrs F/U

Chien KL, et al. Eur J Cardiovasc Prev Rehabil. 15(6):657-62, 2008

Changes in occupation distributions in South Korea

The nutrition transition in South Korea

 Secondary data on economics, dietary intake, anthropometry, and causes of death, including a series of comparable nationally representative dietary surveys (the National Nutrition Survey).

Kim S, et al. Am J Clin Nutr. 71(1):44-53, 2000

Changes of physical activity in South Korea

Rapidly increasing diabetes-related mortality with socioenvironmental changes in South Korea during the last two decades Re-analyzed the annual reports on mortality in S. Korea by KNSO from 1983 to 2001

Changes of indirect measures of physical activity

Fig. Trends of changes in proxies for physical activities among South Koreans.

Choi YJ, et al. Diabetes Res Clin Pract. 74(3):295-300, 2006

* 격렬한신체활동실천율 : 최근 1주일 동안 평소보다 몸이 매우 힘들거나 숨이 많이 가 쁜 격렬한 신체활동을 1회 20분 이상, 주 3일 이상 실천한 분율, 만19세 이상
* 중등도신체활동실천율 : 최근 1주일 동안 평소보다 몸이 조금 힘들거나 숨이 약간 가 쁜 중등도 신체활동을 1회 30분 이상, 주 5일 이상 실천한 분율, 만19세 이상
* 최근 1주일 동안 걷기를 1회 30분 이상, 주 5일 이상 실천한 분율, 만19세 이상 ('01년 : 평소 하루에 총 30분 이상 걷는 분율, 만19세 이상)

KNHANES, 2008

Physical activity

Physical activity and incidence of NIDDM in women

- Prospective cohort of 87,253 US women aged 34-59 years and free of DM, CVD, and cancer.
- During 8 years of F/U (confirmed 1,303 cases of NIDDM)

Table. Physical activity level and RR of NIDDM during 8 years of follow-up

Frequency of vigorous exercise (per week)	Total person- years	No. cases of NIDDM	Age-adjusted RR (95% CI)	Age and BMI adjusted (95% CI)
0	362,784	844	1.0	1.0
1	62,740	100	0.74 (0.6-0.91)	0.89 (0.72-1.11)
2	73,242	88	0.55 (0.44-0.68)	0.71 (0.56-0.89)
3	62,139	100	0.73 (0.59-0.9)	0.93 (0.75-1.16)
4+	94,290	135	0.63 (0.53-0.75)	0.86 (0.71-1.04)
Total	655,195	1,267	_	_

Physical activity The Physicians' Health Study in U.S.A

A prospective study of exercise and incidence of diabetes among

- Using the physician system of follow-up)
- 21,271 US male physicians, aged 40-84 years and free of diagnosed DM, MI, CVA, and cancer

and >26.4 kg/m².) *Manson JE, et al. JAMA. 268(1):63-7, 1992*

Physical activity, BMI, and HTN The Physicians' Health Study in U.S.A

A prospective study of exercise and incidence of diabetes among US male physicians Prospective conort study (5 years of follow-up)

• 21,271 US male physicians, aged 40-84 years and free of diagnosed DM, MI, CVA, and cancer

Variable	Multivariate* Relative Risk (95% Confidence Interval)	P	
Vigoroup eversiont		F	
Less than weekly	1.00 (Referent)		
At least weekly	0.70 (0.53 to 0.92)	.01	
Body-mass index quartile, kg/m ² <23	1.00 (Referent)		
23-24.4	1.07 (0.64 to 1.79)	.79	
24.5-26.4	1.73 (1.10 to 2.74)	.02	
>26.4	3.09 (2.02 to 4.72)	<.001	
History of hypertension‡			
No	1.00 (Referent)		
Yes	2.03 (1.47 to 2.80)	<.001	

Table. Physical activity, BMI, and History of HTN as independent predictors of NIDDM

*The multivariate model included simultaneous control for the variables listed above as well as age (years). cigarette smoking (current, former, never), history of high serum cholesterol level (ves, no), parental infarction before age 60 years (yes, no), alcohol consumption (daily or more often, weekly, monthly, less than monthly), and randomized treatment assignment to aspirin and β-carotene (active agent or placebo).

†Physical activity long enough to work up a sweat.

Physical activity the Osaka Health Survey in Japanese men

Leisure-time physical activity at weekends and the risk of T2DM inplanaese men Prospective examination of 6,013 Japanese men aged 35-60 years who were free of DM, IFG, or HTN at study entry

Table. RR of T2DM according to overall leisure-time physical activity on both weekdays and at weekends

Regular physical act	ivity	Age-adjusted RR (95% CI)	Multiple-adjusted RR ⁺ (95% CI)
At least once a week	ζ.		
Study entry (1981–9	0)†		
	No	1.00	1.00
	Yes	0.73 (0.59-0.89)	0.75 (0.61-0.93)
Study entry – the thi	ird examination‡		
(1981 - 1990)	(1985–1994	4)	
No \rightarrow	No	1.00	1.00
Yes \rightarrow	No	0.77 (0.54-1.08)	0.78 (0.56-1.10)
No \rightarrow	Yes	0.70 (0.50-0.98)	0.66 (0.47-0.93)
Yes \rightarrow	Yes	0.61 (0.45-0.82)	0.63 (0.47-0.86)
Frequency (times per	r week)		
0		1.00	1.00
1-2		0.78 (0.63-0.97)	0.80 (0.64-0.99)
≥3		0.54 (0.34-0.86)	0.55 (0.34-0.87)

Okada K, et al. Diabet Med. 17(1):53-8, 2000

Physical activity in Japanese male office workers

Hours of work and the risk of developing T2DM in Japanese male Office WorkerS A cohort of 1,266 Japanese male office workers aged 35-59 years and free of IFG, T2DM, history of DM, or medication for HTN were re-examined over 5 successive years

Table. Hours of work a day and the risks of T2DM among 1266 Japanese male office workers during 5 years of follow up.

	Hours of work a day				Test for	
	< 8.0	8.0–8.9	9.0–9.9	10.0–10.9	≥11.0	- trend p value
Type 2 diabetes:						
Cases	20	19	6	5	4	
Person-years	1651	1577	1048	838	824	
Rate/1000 person-years	12.1	12.0	5.7	6.0	4.9	
Age adjusted relative risk	1.00	0.91	0.46	0.43	0.36	0.014
(95% CI)	(Reference)	(0.48 to 1.72)	(0.17 to 1.26)	(0.17 to 1.10)	(0.12 to 1.11)	
Multivariate adjusted relative risk*	Ì.00	Ò.90	Ò.50	Ò.49	ò.30	0.014
(95% CI)	(Reference)	(0.46 to 1.74)	(0.18 to 1.42)	(0.19 to 1.26)	(0.09 to 0.94)	

Physical activity in middle-aged Japanese men

Daily life activity and risk of developing T2DM in middle-aged

Japanese male office workers aged 35 to 59 years who did not have IFG, T2DM or a history of CVD, and were not receiving medication for HTN

Energy expenditure in daily life	Cases/	Rate per 1000 person-years	RR (95% CI)				
(kcal·kg ⁻¹ ·day ⁻¹)	person years	1000 person years	Age-adjusted values	Multivariate-adjusted values ^a			
Occupational physical a	ctivity ^b						
<14.3 14.3–17.9 \geq 18.0 <i>p</i> value for trend	155/5646 117/5956 97/6086	27.5 19.6 15.9	1.00 (reference) 0.75 (0.59–0.95) 0.62 (0.48–0.80) <0.001	1.00 (reference) 0.88 (0.68–1.12) 0.85 (0.65–1.13) 0.242			
Walking or cycling ^c							
$\begin{array}{l} <2.9\\ 2.9-4.8\\ \geq 4.9\\ p \text{ value for trend} \end{array}$	137/5948 110/5943 122/5796	23.0 18.5 21.0	1.00 (reference) 0.79 (0.61–1.01) 0.88 (0.69–1.12) 0.277	1.00 (reference) 0.87 (0.67–1.12) 1.03 (0.80–1.31) 0.881			
Brisk walking							
<1.3 1.3–2.4 ≥2.5 <i>p</i> value for trend	145/5573 139/6623 85/5491	26.0 21.0 15.5	1.00 (reference) 0.81 (0.64–1.02) 0.59 (0.45–0.77) <0.001	1.00 (reference) 0.97 (0.76–1.23) 0.78 (0.59–1.03) 0.099			
Other physical activities ^d							
<5.2 5.2-7.6 ≥ 7.7 <i>p</i> value for trend	154/5662 120/5994 95/6031	27.2 20.0 15.8	1.00 (reference) 0.76 (0.60–0.97) 0.58 (0.45–0.75) <0.001	1.00 (reference) 0.80 (0.63–1.02) 0.68 (0.52–0.88) 0.003			

Table. Risk of developing IFG or T2DM according to levels of selected daily life activities.

Nakanishi N, et al. Diabetologia. 47(10):1768-75, 2004

Nutritional changes in South Korea

Rapidly increasing diabetes-related mortality with socioenvironmental changes in South Korea during the last two decades Re-analyzed the annual reports on mortality in S. Korea by KNSO from 1983 to 2001

Trends of changes in diet factors in South Korea

Energy intake

Energy supply

Fig. Trends in total energy intake in South Korea.

KNHANES, 2008

Sources of energy in South Korea

The nutrition transition in South Korea

KNHANES, 2008

Intake trends for major food groups in South Korea

The nutrition transition in South Korea

 Secondary data on economics, dietary intake, anthropometry, and causes of death, including a series of comparable nationally representative dietary surveys (the National Nutrition Survey).

Fig. Trends in daily intake per capita by food group in South Korea.

Kim S, et al. Am J Clin Nutr. 71(1):44-53, 2000

The nutrition transition in South Korea

 Secondary data on economics, dietary intake, anthropometry, and causes of death, including a series of comparable nationally representative dietary surveys (the National Nutrition Survey).

Fig. Trends in percentage of energy from fat (per capita per day) in
China, Japan, and South Korea.Kim S, et al. Am J Clin Nutr. 71(1):44-53, 2000

Diets The Nurses' Health Study in U.S

Diet, lifestyle, and the risk of type 2 diabetes mellitus in women

84,941 female nurses from 1980 to 1996 (free of diagnosed CVD, DM, and cancer at baseline).
Information about their diet and lifestyle was updated periodically.

Lifestyles The Nurses' Health Study in U.S

Diet, lifestyle, and the risk of type 2 diabetes mellitus in women

- 84,941 female nurses from 1980 to 1996 (free of diagnosed CVD, DM, and cancer at baseline).
- Information about their diet and lifestyle was updated periodically.

Table. Multivariate RRs of T2DM according to BMI

FACTOR	BODY-MASS INDEX					
	<25.0	25.0-29.9	≥30.0			
	relative risk (95% confidence interval)					
Quintile for dietary score†						
1	1.0	1.0	1.0			
2	0.68(0.49 - 0.94)	0.80(0.66 - 0.96)	0.89(0.77 - 1.03)			
3	0.66(0.46 - 0.95)	0.69 (0.55-0.86)	0.81 (0.69-0.96)			
4	0.51(0.36 - 0.72)	0.55 (0.45-0.68)	0.72 (0.62-0.84)			
5	0.38 (0.25-0.58)	0.42(0.32 - 0.55)	0.49 (0.40-0.61)			
Weekly exercise‡						
<0.5 hr	1.0	1.0	1.0			
0.5–1.9 hr	0.74(0.48 - 1.16)	0.92(0.70 - 1.23)	0.83 (0.69-0.99)			
2.0-3.9 hr	0.70(0.45 - 1.10)	0.90(0.67 - 1.21)	0.82 (0.68-1.00)			
4.0–6.9 hr	0.63(0.40 - 1.00)	0.91(0.68 - 1.21)	0.76 (0.62-0.92)			
≥7.0 hr	0.50 (0.25-0.99)	1.06(0.69 - 1.63)	0.74 (0.51-1.09)			
Smoking status		· · · · · ·	· · · · · · · · · · · · · · · · · · ·			
Never smoked	1.0	1.0	1.0			
Former smoker	0.95(0.73 - 1.24)	1.00(0.86 - 1.17)	1.24(1.12 - 1.39)			
Current smoker		· · · · · ·	· · · · · · · · · · · · · · · · · · ·			
1–14 cigarettes/day	0.72(0.44 - 1.18)	1.14(0.85 - 1.54)	1.47(1.17 - 1.85)			
≥15 cigarettes/day	1.39 (1.02-1.88)	1.40(1.14 - 1.71)	1.31 (1.10-1.56)			
Daily alcohol consumption		· · · /	· · · · · · · · · · · · · · · · · · ·			
0 g	1.0	1.0	1.0			
0.1-5.0 g	0.85(0.65 - 1.11)	0.70(0.60 - 0.82)	0.81(0.72 - 0.90)			
5.1–10.0 g	0.64 (0.42-0.98)	0.62(0.48-0.81)	0.60(0.48 - 0.76)			
>10.0 g	0.85 (0.63–1.14)	0.57 (0.46-0.71)	0.61 (0.50-0.74)			

Hu FB, et al. N Engl J Med. 345(11):790-7, 2001

a. Numbers on the arrows between transition boxes are path coefficients

b. Numbers on the outside arrows pointing into transition boxes are residuals

Genetic susceptibility

Comprehensive association study of T2DM and related quantitative traits with 222 candidate genes

- 1,161 T2DM subjects and 1,174 control Finns who are NGT
- Genotyped 3,531 tagSNPs and annotation-based SNPs and imputed an additional 7,498 SNPs

Table. Diabetes association for SNPs genotyped in FUSION stage 1 and 2 samples

SNP	Gene symbol	Chromosome	Position (bp)*	Risk/nonrisk allele	Risk allele frequency	Odds ratio (95% CI)	$P_{\rm SNP}$
rs4740283	RAPGEF1	9	131,477,850	G/A	0.104	3.12 (1.73-5.63)	0.00013
rs2021966	ENPP1	6	132,192,132	A/G	0.608	1.27 (1.13-1.43)	0.00026
rs1042522	TP53	17	7,520,197	G/C	0.263	1.18 (1.08-1.30)	0.00086
rs1882095	NRF1	7	128,991,595	T/C	0.381	1.24 (1.10-1.40)	0.00096
rs10513684	SLC2A2	3	172,206,912	C/T	0.918	1.28 (1.11-1.49)	0.0023
rs1801282	PPARG	3	12,368,125	C/G	0.836	1.20 (1.07-1.33)	0.0034
rs222852	SLC2A4	17	7,081,330	A/G	0.610	1.14(1.04-1.23)	0.0070
rs4843165	FOXC2	16	85,162,542	C/T	0.706	1.15 (1.05-1.25)	0.0078
rs5400‡	SLC2A2	3	172,215,002	G/A	0.871	1.19 (1.06-1.35)	0.010
rs858341	ENPP1	6	132,202,148	G/A	0.510	1.21 (1.06–1.39)	0.012
rs1349498	RAPGEF4	2	173,418,113	C/T	0.729	1.35(1.09 - 1.67)	0.015
rs8069976	SOCS3	17	73,861,445	C/A	0.849	1.17(1.04 - 1.31)	0.016
rs3769249	RAPGEF4	2	173,648,169	G/A	0.647	1.27 (1.06–1.51)	0.018
rs17280845	CBLB	3	106,927,226	T/C	0.238	1.37 (1.07-1.76)	0.027
rs5219	KCNJ11	11	$17,\!366,\!148$	T/C	0.476	1.11 (1.02–1.20)	0.031
rs10915239	MECR	1	29,344,565	C/A	0.945	1.26 (1.04–1.51)	0.033

Gaulton KJ, et al. Diabetes. 57(11):3136-44, 2008

Nuclear respiratory factor 1 (nRF1) gene

Association between polymorphisms in the NRF 1 gene and T2DM in the Korean population

- The NRF1 gene was sequenced to identify polymorphisms in 24 Korean DNA samples
- 766 patients with type 2 diabetes and 303 non-diabetic subjects

Haplotype	Locus	Locus						Frequency	
	-46,567	-46,350	141	33,162	54,529	59,745	Diabetes	Control	
H1	G	insA	G	С	А	А	0.499	0.533	0.138
H2	G	delA	G^b	С	A ^b	А	0.042	0.066	0.009
H3	G	delA	G	С	А	G	0.097	0.087	0.626
<i>H4</i>	G	delA	T ^b	С	G^{b}	А	0.277	0.226	0.004
H5	А	delA	Т	Т	G	А	0.062	0.061	0.880

Table. Association between haplotypes and the risk of type 2 diabetes

Each haplotype with a frequency >0.05 is shown

^ap values of haplotype associations were calculated by the Haplo.Score algorithm developed by Schaid et al. [14], while controlling for age, sex and BMI as covariates. They were not corrected for multiple comparisons (five tests)

^bAlleles regarded as the determinants modifying susceptibility to type 2 diabetes after examining the allelic differences between the protective (H2) and susceptible (H4) haplotypes

Nuclear respiratory factor 1 (nRF1) gene

Genetic variation and association analyses of nRF1 gene in Chinese pts with T2DM 1,027 unrelated subjects, including T2DM pts (n=596) and non-DM control subjects (n=431)

- Using a variation screening approach, 6 novel & 10 known SNPs in NRF1 gene were identified

Table. Association between the NF	RF1 genetic polymorphisms	and type 2 diabetic patients
-----------------------------------	---------------------------	------------------------------

No.	SNP ID	SNP type	Genotype	Type 2 diabetic patients	Nondiabetic control subjects	Additive OR (95% CI); <i>P/Pc</i> values	Dominant OR (95% CI); <i>P/Pc</i> values	Statistical power*
D1	Neuel	46197 The C	TT TC	482 (80.9) 110 (18.5)	312(72.4) 114(26.5) 5(1.1)	0.654 (0.464–0.842); 0.001/0.018	0.620 (0.462–0.832); 0.001/0.018	0.999
PI	Novei	-40127 1>0	AA AG	4(0.6) 562(94.3) 34(5.7)	5(1.1) 423 (98.1) 8 (1.9)	3.314 (1.444-6.693): 0.002/0.036	3.199 (1.466-6.981): 0.002/0.036	0.998
P9	Novel	$+98560 \text{ A}{>}\text{G}$	GG	0 (0.0)	0 (0.0)			0.000

Table. Common haplotypes of SNPs in the NRF1 gene

	Haplotypes	Type 2 diabetic patients	Nondiabetic control subjects	OR (95% CI)	P/Pc values
H1	T-A-G-G-T-A-C-G	486 (40.8)	317 (36.8)	1.184 (0.988-1.417)	0.067/0.268
H2	$T - \overline{\mathbf{G}} - \overline{\mathbf{G}} - G - T - A - C - \overline{\mathbf{G}}$	174 (14.6)	167 (19.4)	0.706 (0.557-0.895)	0.004/0.016
H3	$T-\overline{\underline{G}}-\overline{\underline{T}}$ -G-T-A-C- $\overline{\underline{G}}$	129 (10.8)	72 (8.4)	1.332 (0.968–1.832)	0.063/0.252
H4	T- <u>A</u> - <u>G</u> -G-T-A-C- <u>A</u>	58(4.9)	46(5.3)	$0.908 \ (0.599 - 1.383)$	0.631/—

Data are n (%). SNP P9 was not included in the haplotype analyses. The alleles from SNPs P1, -4, -5, -6, and -7 constructed in these four haplotypes were the same and are represented in italic letters. Four haplotypes, therefore, can be simply defined as A-G-G, G-G-G, G-T-G, and A-G-A, which were constructed from SNPs P2, P3, and P8. P values had no adjustment, while Pc values were corrected for multiple comparisons.

Table. Replicated type 2 diabetes gene nearest to the identified marker

Ramachandran A, Ma RC, Snehalatha C. Lancet. 375(9712):408-18, 2010

	Chromosome location	Gene function	Marker	Risk allele	OR*	Replicated/discovered marker in Asian populations	Risk allele	OR
PPARG	3	Adipocyte development; target of glitazone class of drugs	rs1801282 ⁵⁸	C	1.14	Not consistently replicated ⁵³		
KCNJ11	11	Kir6-2 potassium channel	rs521959	Т	1.14	Japanese (rs5219) ^{69,61}	Т	1.25, 1.32
TCF7L2	10	Transcription factor, transactivates glucagon, regulates insulin secretion	rs7903146, rs122553754	T, T	1.37	Indians (rs12255372,62 rs7903146,63 rs1088540964)	T, T, C	1·50, 1·50, 1·64
TCF7L2	10	Transcription factor, transactivates glucagon, regulates insulin secretion	rs790314655	Т	1.46	Chinese (rs290487,56 rs1196205,65 rs119621857)	C, C, G	1·51, 2·11, 1·43
TCF7L2	10	Transcription factor, transactivates glucagon, regulates insulin secretion				Japanese (rs1255372, ⁶⁶ rs7903146 ⁶⁷)	T, T	1.70, 1.69
SLC30A8	8	Zinc transporter, insulin storage and secretion	rs13266634 ⁵⁸	C	1.12	Japanese (rs13266634); ⁶⁰ Chinese and Koreans (rs13266634) ⁵⁷	C; C	1.23; 1.13
CDKAL1	6	Islet glucotoxicity sensor, regulates insulin secretion	rs7756992, rs13266634; ⁶⁸ rs7754840 ⁵⁸	G, C; C	1·20, 1·15; 1·12	Chinese (rs7756992, rs13266634); ⁶⁸ Japanese (rs7756992) ⁶⁰	G, C; G	1·25, 1·19; 1·16
HHEX	10	Transcription factor in pancreatic development	rs111187558	С	1.13	Japanese (rs1111875); ⁶⁰ Chinese and Koreans (rs7923837) ⁵⁷	C; G	1.24; 1.25
IGF2BP2	3	Growth factor binding protein, pancreas development	rs4402960 ⁵⁸	Т	1.14	Chinese and Koreans (rs4402960); ^{sy} Japanese (rs4402960); ^{so} Indians (rs4402960) ^{s4}	T; T; T	1·12; 1·37; 1·37
CDKN2A/ CDKN2B	9	Cyclin-dependent kinase inhibitor, islet development	rs10811661 ⁵⁸	Т	1.2	Chinese and Koreans (rs10811661); ⁵⁷ Chinese (rs10811661); ⁶⁹ Japanese (rs10811661) ⁶⁰	T; T; T	1·27; 1·31; 1·26
FTO	16	Fat mass and obesity associated; alters body-mass index	rs8050136 ⁵⁸	A	1.17	Indians (rs9939609); ⁶⁴ Chinese and Koreans (rs8050136) ⁵⁷	A; A	1.46; 1.16
WFS1	4	Wolframin. Endoplasmic reticulum transmembrane protein	rs10010131 ⁷⁰	G	1.15	†	146) 1	
JAZF1	7	Transcriptional repressor	rs864745 ⁷¹	Т	1.10	†		
HNF1B	17	Transcription factor, pancreas development	rs757210 ⁷²	A	1.12	t	355 5)	
CDC123/ CAMK1D	10	Calcium/calmodulin-dependent protein kinase 1D; cell cycle	rs12779790 ⁷¹	G	1.11	t	**	
ADAMTS9	3	Secreted metalloprotease	rs4607103 ⁷¹	С	1.09	t		
NOTCH2	1	Transmembrane receptor; pancreatic organogenesis	rs10923931 ⁷¹	T	1.13	t		
THADA	2	Thyroid adenoma associated gene; apoptosis	rs7578597 ^{,1}	Т	1.15	t	847) -	22
TSPAN8/ LGR5	12	Tetraspanin 8; cell surface glycoprotein	rs7961581 ²¹	C	1.09	t	••	
KCNQ1	11	Potassium voltage-gated channel	rs2237892, ⁷³ rs2237895 ⁷⁴	С, С	1·29, 1·24	Japanese (rs 2237892),73 Chinese (rs2237892),73 Korean (rs2237892)73	C, C, C	1·43, 1·38, 1·41

FPG and dyslipidemia

Independent risk factors for T2DM in Korean adults

5,372 non-diabetic participants (3,670 men and 1,702 women; 20-79 years), 5 yrs F/U

	Relative risk	95% CI	P-value
Sex (male vs. female)	1.06	0.64-1.75	0.809
Current smoking	1.75	1.23-2.47	0.002
Family history of DM	2.12	1.49-3.00	< 0.001
Age (10 years)	1.26	1.04-1.53	0.019
BMI (2.5 kg/m^2)	1.37	1.16-1.62	< 0.001
ALT (quartile)	1.30	1.08-1.57	0.006
Fasting glucose (quartile)	3.35	2.69-4.17	< 0.001
Triglycerides (quartile)	1.07	0.89-1.28	0.474
HDL cholesterol (quartile)	0.84	0.71-1.00	0.048
Fatty liver	1.51	1.04-2.20	0.034

Table. Risk factors of the incident T2DM in multiple logistic regression analysis

Fasting plasma glucose Israeli Diabetes Research Group

Normal fasting plasma glucose levels and type 2 diabetes in

- ¥93,163 subjects who had baseline FPG levels <100 mg/dL (men, 26-45 yrs of age)
- A total of 208 incident cases of T2DM occurred (during 74,309 person-years of F/U)

Table. Hazard Ratios for Type 2 Diabetes among 13,163 Men According to Quintiles of Normal FPG Levels.

Variable	Quintile 1 (N=2529)	Quintile 2 (N=2545)	Quintile 3 (N=2598)	Quintile 4 (N=2719)	Quintile 5 (N=2772)	P Value for Trend
Fasting plasma glucose levels (mg/dl)	50-81	82-86	87-90	91-94	95-99	_
Person-years of follow-up	13,830	13,969	14,631	15,637	16,242	<u></u> 23
No. of incident cases of diabetes	20	24	37	50	77	
Adjusted risk ratio (95% CI)						
Age	1	1.47 (0.97–2.23)	1.81 (1.16-2.83)	2.33 (1.42-3.83)	3.05 (1.78–5.18)	<0.001
Age and body-mass index	1	1.35 (0.89–2.05)	1.65 (1.06–2.58)	2.17 (1.32–3.56)	2.68 (1.57–4.56)	<0.001
Age, triglyceride level, and body- mass index	1	1.30 (0.86–1.99)	1.58 (1.02–2.48)	2.05 (1.25-3.37)	2.40 (1.40-4.11)	<0.001
Multivariate†	1	1.43 (0.94–2.19)	1.82 (1.16–2.86)	2.64 (1.60–4.37)	2.84 (1.67–4.87)	<0.001

⁺ The multivariate Cox regression model was adjusted for age, BMI, and TG levels as continuous variables; physical activity, F/H of DM, and smoking status. *Tirosh A, et al. N Engl J Med. 353(14):1454-62, 2005*

IFG & IGT the Singapore Impaired Glucose Tolerance (IGT) Follow-up Study

Lowering the criterion for IFG: impact on ds. prevalence &

Table. Risk of development of diabetes according to FPG.

Glucose tolerance based on FPG criteria	n	Percentage who developed diabetes	Odds ratio (95% CI)
Analyses with subjects pooled within			
categories of FPG if FPG 5.6–6.9			
mmol/l			
FPG < 5.6 mmol/l			
NGT*	200	2.4	1
IGT*	89	19.1	9.7 (3.5–26.3)
FPG 5.6–6.0 mmol/l	137	22.2	12.4 (4.7–32.8)
FPG 6.1–6.9 mmol/l	43	55.2	55.1 (20.4–148.7)
Analyses with study subjects stratified by			
both FPG and 2-h PG criteria			
FPG < 5.6 mmol/l			
NGT*	200	2.4	1
IGT*	89	19.1	9.7 (3.5–26.8)
FPG 5.6–6.0 mmol/l			
NGT*	66	9.6	4.4 (1.3-14.6)
IGT*	71	31.1	19.8 (7.4–53.5)
FPG 6.1–6.9 mmol/l			
NGT*	10	28.6	17.6 (4.0-77)
IGT*	33	59.8	66.2 (24.1–182.1)

Odds ratios of future diabetes were estimated using logistic regression analysis and were adjusted for age, sex, and ethnic group. Data are presented for glucose tolerance determined by FPG with and without stratification by 2-h PG following a 75-g OGTT. *Glucose tolerance based on 2-h PG criteria.

Tai ES, et al. Diabetes Care. 27(7):1728-34., 2004

IFG and risk of diabetes in Taiwan: follow-up over 3 years.

 A population-based cohort study was conducted among residents aged >or=40 years on the island of Penghu, Taiwan, (n=1,601)

Table. Variables independently associ	ted with DM among 600 residents or	f Penghu Islets, Taiwan, 1998/1999
---------------------------------------	------------------------------------	------------------------------------

Variables	Age-sex adjusted odds ratio	95% CI
Triglyceride (40 mg/dl)	1.7	1.4-2.0**
Apolipoprotein B (40 mg/dl)	2.0	1.1 - 3.0*
IFG ₀ (yes/no)	4.4	1.9 - 10.6 * *
WHR	7.1	3.4-10.8**
BMI (kg/m^2)	1.1	0.9 - 1.2
Family history (yes/no)	1.3	0.8 - 1.7

Odds ratios calculated by age-sex-adjusted multiple logistic regression analysis. Odds of diabetes were calculated vs. odds of not having diabetes. Independent variables available to the models were age, sex, family history of diabetes, BMI, triglyceride concentration, apolipoprotein B and IFG₀ (all at baseline, 1995-1996).

Insulin secretion and insulin resistance

in Korean type 2 diabetes mellitus

Fig. Insulinogenic index and HOMA(R) in the NFG/NGT, IFG/NGT, NFG/IGT, IFG/IGT, and diabetes groups. *Kim DJ, Lee MS, Kim KW, Lee MK. Metabolism. 50(5):590-3, 2001*

Selective β-cell loss and α-cell expansion in patients with diabetes mellitus in Korea

β-cell (%)

Area fraction in islet (%)

beta-cell beta-cell alpha-cell beta-cell control diabetes

Retnakaran R et al. J Clin Endocrinol Metab 2006:91;93

Retnakaran R et al. J Clin Endocrinol Metab 2006:91;93

San Antonio Heart Study: baseline status for insulin resistance and insulin secretion in those converted to type 2 diabetes during 7-year follow up; n = 195

Haffner SM, et al. Circulation 101:975–980., 2000

Insulin secretion and insulin resistance	
한국인 남성에서 Homeostasis Model Assessment 표지자로 측정한 인슐린저항성 및 인슐린분비능과 당뇨병 발생위험도	

- 15,781명의 남성 수진자를 대상
- 당뇨병이 있거나 공복혈당이 126 mg/dL 이상인 대상자 805명 (5.1%)은 제외

Table. RR for future DM according to different levels of HOMA-IR and HOMA β -cell.

HOMA-IR	HOMA β -cell	Case/control subjects	RR (95% CI)	P value
Low	High	3/85	1.00 (ref.)	< 0.001
Low	Low	33/231	4.413 (1.290~15.096)	0.018
High	High	60/230	3.379 (0.997~11.455)	0.051
High	Low	190/86	39.065 (11.736~130.035)	< 0.001

Logistic regression analyses were performed with age, body mass index and smoking included in the model. HOMA-IR, homeostasis model assessmentof insulin resistance.

Fig. Correlation between insulin sensitivity and birth weight.

Fig. Correlation between birth weight and visceral fat area.

Choi CS, et al. Diabetes Res Clin Pract. 49(1):53-9, 2000

Fetal and infant growth

Fetal and infant growth and impaired glucose tolerance at age 64

- F/U study of men born during 1920-30 whose birth weights and weights at 1 year were known.
- 468 men born in east Hertfordshire and still living there.

Birth weight*		No of	No (%) of gluce	men with se (mmol/	Odds ratio	
lb	g	men	7.8-11.0	≥11.1	≥7.8	(95% confidence interval)†
≤5.5	≤2495	20	6 (30)	2 (10)	8 (40)	6.6 (1.5 to 28)
-6.5	-2948	47	10(21)	6(13)	16 (34)	4.8(1.3 to 17)
-7.5	-3402	104	26 (25)	6(6)	32 (31)	4.6(1.4 to 16)
-8.5	-3856	117	18 (15)	8 (7)	26 (22)	2.6(0.8 to 8.9)
-9.5	-4309	54	2 (4)	5 (9)	7 (13)	1.4(0.3 to 5.6)
>9.5	>4309	28	4 (14)	0	4 (14)	1.0 –
Total		370	66 (18)	27 (7)	93 (25)	

Table. Proportions of men aged 64 with IGT or DM according to birth weight.

*Original measurements were expressed in lb and were rounded. †Odds ratio for two hour glucose concentration of \geq 7.8 mmol/l adjusted for body mass index (χ^2 for trend=15.4; p<0.001). Hales CN, et al. BMJ. 303(6809):1019-22, 1991

Metabolic syndrome Hales CN, Barker DJ. Br Med Bull. 60:5-20, 2001

Smoking cessation Korea Medical Insurance Corporation Study

Smoking cessation and risk of type 2 diabetes mellitus

- 8-year prospective study
- 27,635 non-diabetic men, aged 35-44 years (5,701 nonsmokers, 7,477 ex-smokers and 14,457 sustained smokers)

Table. Relationships between smoking status and risk for developing diabetes mellitus

	Total number	Number of events (%)	Age-adjusted	Multivariate adjusted 1 ^b	Multivariate adjusted 2 ^c
Nonsmokers	5701	188 (3.3)	1.00	1.00	1.00
Ex-smokers	7477	272 (3.6)	1.11 (0.92–1.34)	1.14 (0.94–1.39)	1.22 (0.96-1.55)
Sustained smokers	14457	710 (4.9)	1.53 (1.04–1.08)	1.56 (1.32–1.85)	1.60 (1.29–1.97)
Smoking amount ^a					
Sustained smokers					
<10 cigarettes/day	1752	70 (4.0)	1.23 (0.93-1.63)	1.22 (0.91–1.63)	1.23 (1.86–1.77)
\geq 10 to <20 cigarettes/day	9284	435 (4.7)	1.46 (1.22–1.73)	1.49 (1.25–1.79)	1.60 (1.28–2.00)
\geq 20 cigarettes/day	3421	205 (6.0)	1.89 (1.54-2.31)	1.93 (1.57-2.38)	1.75 (1.35-2.27)
Quit smoking period ^a					
Ex-smokers					
Before 1992	4744	150 (3.2)	0.96 (0.77-1.19)	0.96 (0.77-1.20)	0.95 (0.72-1.25)
During 1992–1993	1396	49 (3.5)	1.07 (0.78-1.47)	1.18 (0.89-1.64)	1.44 (0.96-2.15)
During 1994–1995	1337	73 (5.5)	1.69 (1.28-2.23)	1.79 (1.34-2.38)	2.13 (1.51-3.00)

Data are risk ratio (95% confidence interval) unless indicated otherwise. ^aCompared with nonsmokers. ^bAdjusted for age and baseline fasting serum glucose. ^cAdjusted for age, baseline fasting serum glucose, weight change, baseline body mass index, family history of diabetes, alcohol consumption and exercise status.

Cigarette smoking a four-year community-based prospective study in South Korea

Cigarette smoking is an independent risk factor for type 2

- 10,098 Subjects were recruited from rural and urban areas.
- 75 g OGTT & full biochemical assessments at baseline and during 4-year F/U period.

	Total number	Number of events (%)	Unadjusted	Multivariate adjusted 3‡
Never smokers	646	51 (7.9)	1.00	1.00
Ex-smokers	983	123 (12.5)	1.59 (1.15, 2.21)	1.60 (1.07, 2.39)
Current smokers (<20 cigarettes/day)	534	57 (10.7)	1.31 (0.90, 1.92)	2.06 (1.35, 3.16)
Heavy smokers (≥20 cigarettes/day)	885	98 (11·1)	1.42 (1.01, 2.00)	2.41 (1.48, 3.93)
Total	3048	329 (108)		

Table. Relationships between smoking status and risk for developing diabetes mellitus

Data are relative risk vs. never smokers (95% CI).

‡Adjusted of age, family history of DM, rural or urban area, waist, body fat, total pack year, exercise, alcohol drinking, income, education, WBC, HDL-C, TG, ALT, hs-CRP, systolic BP, HOMA-IR, HOMA-beta.

Cigarette smoking in US male physicians

A prospective study of cigarette smoking and the incidence of

- 21,068 US male physicians aged 40 to 84 years in the Physicians' Health Study who were initially free of diagnosed DM, CVD, and cancer
- 12 years of follow-up

Pack-Years of Smoking	Cases	Age- Adjusted*	Multivariate Adjusted [†]
0 (never smoker)	323	1.0 (Referent)	1.0 (Referent)
1 to 19.9	148	1.0 (0.8–1.2)	1.0 (0.8–1.3)
20 to 39.9	116	1.4(1.1-1.7)	1.3 (1.0–1.6)
≥ 40	122	2.1 (1.7–2.5)	1.6 (1.3–2.1)
P for trend [‡]		< 0.001	< 0.001

* Adjusted for age (1-year categories) and treatment assignment (aspirin and beta-carotene).

[†] Adjusted for age (1-year categories), body mass index (quartiles), physical activity (<1, 1, 2–4, and 5 or more times per week), history of hypertension, history of high cholesterol, parental history of myocardial infarction at age <60, alcohol consumption (<monthly, monthly, weekly, daily), and treatment assignment.

Table. Association between Pack-Years of Cigarette Smoking and Risk of T2DM

Smoking cessation The ARIC (Atherosclerosis Risk in Communities) Study in US

Smoking, smoking cessation, and risk for type 2 diabetes mellitus

10,892 middle-aged adults who initially did not have diabetes in 1987 to 1989.

Fig. 9 year adjusted HR (1990–1998) for incident DM in 10,892 middle-aged adults, by years since quitting before baseline (1987–1989).

Fig. Adjusted HR for incident self-reported DM during 12 years in 10,406 middle-aged adults without diabetes at baseline and 3-year F/U.

Yeh HC, et al. Ann Intern Med. 152(1):10-7, 2010

Cigarette smoking in middle-aged Japanese men

Cigarette smoking and risk for IFG and T2DM in middle-aged

• 4,266 Sapanese male office workers 35 to 59 years of age who did not have IFG or T2DM and were not taking medication for HTN at study entry.

Condition	Never-Smokers	Former Smokers	Current Smokers			P Value for Trend*
			1–20 Cigarettes/d	21–30 Cigarettes/d	≥31 Cigarettes/d	
Impaired fasting glucose						
Cases, n	20	18	16	12	21	
Person-years	1877	979	1206	892	863	
Rate per 1000 person-years	10.7	18.4	13.3	13.4	24.3	
Age-adjusted relative risk	1.00 (voferent)	4 (4 (0.95 2.04)	4 20 (0 (2 2 2 2))	4 24 (0 50 2 48)		0.040
(95 % CI)	1.00 (referenc)	1.61 (0.85–3.04)	1.20 (0.62–2.32)	1.21 (0.59–2.48)	2.20 (1.19–4.07)	0.019
risk (95% CI)†	1.00 (referent)	1.62 (0.85–3.10)	1.14 (0.58–2.25)	1.33 (0.63–2.80)	2.56 (1.32–4.95)	0.013
Type 2 diabetes						
Cases, n	7	5	11	12	19	
Person-years	1906	1014	1227	899	892	
Rate per 1000 person-years	3.7	4.9	9.0	13.3	21.3	
Age-adjusted relative risk	1 00 (referent)	1 28 (0 41 4 06)	2 29 (0 92 6 45)	2 54 (1 20 0 01)	5 60 (2 25 12 22)	<0.001
(95 % CI)	1.00 (referenc)	1.29 (0.41–4.06)	2.38 (0.92-6.15)	3.54 (1.39-9.01)	5.60 (2.35-13.32)	< 0.001
risk (95% CI)†	1.00 (referent)	1.08 (0.34–3.42)	1.88 (0.71–5.00)	3.02 (1.15–7.94)	4.09 (1.62–10.29)	<0.001

Table. Smoking Status and Risk for IFG and T2DM in the Study Sample.

* Calculated across increasing categories of smoking for current smokers only.

+ Controls for age, body mass index, alcohol consumption, regular physical exercise, family history of diabetes, systolic and diastolic blood pressure, fasting plasma glucose level, total cholesterol level, high-density lipoprotein cholesterol level, triglyceride level, uric acid level, and hematocrit at study entry.

Nakanishi N, et al. Ann Intern Med. 133(3):183-91, 2000

Heavy smoking raises risk for type 2 diabetes mellitus in obese men; but, light smoking reduces the risk in lean men

• a follow-up study in 16,829 apparently healthy men 30 to 59 years of age.

Nagaya T, et al. Ann Epidemiol. 18(2):113-8, 2008

Alcohol consumption and higher incidence of IFG or T2DM in obese Korean men

 The annual health evaluation data of 2,500 male workers from 2002 to 2006, retrospectively

Table. The adjusted RR for IFG or T2DM by alcohol intake during 4 years' observation by tertile of waist, BMI, and adiponectin

	RR^{a}	(95% CI)
Alcohol (g ethanol/day)		
0	1	(Reference)
1-14	1.123	(0.916 - 1.378)
15-29	1.332	(1.063 - 1.669)
≥30.0	1.346	(1.051 - 1.724)

Table. The adjusted RR for IFG or T2DM by amount of alcohol intake according to BMI during 4 years

	Body mass index (kg/m ²) Normal ^b (15.9–22.9)		Overweight	(23.0–24.9)	Obese (25.0–38.7)	
	673		514		530	
Number of participants	RR ^a	(95% CI)	RR^{a}	(95% CI)	RR ^a	(95% CI)
Alcohol intake (g ethanol/da	ay)					
0	1	(Reference)	1	(Reference)	1	(Reference)
1 - 14	0.842	(0.603 - 1.176)	1.164	(0.795 - 1.705)	1.498	(1.042 - 2.153)
15-29	1.068	(0.736 - 1.551)	1.421	(0.947 - 2.133)	1.634	(1.091 - 2.447)
≥30.0	1.019	(0.662 - 1.568)	1.604	(1.031 - 2.495)	1.563	(1.019 - 2.396)
FPG (mg/dL)	1.040	(1.021-1.061)	1.049	(1.026-1.072)	1.047	(1.025 - 1.068)
GGT (mg/dL)	1.001	(0.996-1.006)	1.000	(0.995-1.005)	1.005	(1.002 - 1.008)

^aRelative risk adjusted for age, family history of diabetes, smoking, exercise, FPG, aspartate aminotransferase, and GGT.

^bNormal group include 46 underweight subjects.

Roh WG, et al. Alcohol. 43(8):643-8, 2009

Alcohol in middle-aged Japanese men

Alcohol consumption and risk for IFG or T2DM in middle-aged

2,939 apanese male office workers aged 35-59 years who did not have IFG, T2DM, HTN, or a history of CVA

Table. Incidence rates per 1,000 person-years for IFG and T2DM according to alcohol intake among 2,953 Japanese male office workers during 7 years of follow-up.

Multivariate-adjusted RR (95% CI) 1.51 (p=0.016)

Nakanishi N, et al. Diabetes Care. 26(1):48-54, 2003

Daily alcohol consumption and the risk of type 2 diabetes in

- Japan Banese Then aged 35-61 years who did not have DM, IFG, HTN, or LC at study entry.
- Data on alcohol consumption were obtained from questionnaires.

Daily alcohol consumption (ml/day)			Tota	l person-years	Cases	Age-adjusted RR (95% CI)	Multiple adjusted RR (95% CI)*
BMI ≤22.0 kg/m ² Study entry Nondrinkers 0.1–19.0 19.1–29.0 29.1–50.0 >50.1	\rightarrow \rightarrow	Third examination Nondrinkers 0.1–19.0 19.1–29.0 29.1–50.0 ≥50.1	}	11,878 1,484 2,846	29 7 14	1.00 1.98 (0.87–4.53) 2 11 (1 09–4 04)	1.00 1.61 (0.68–3.76) 2.01 (1.01–4.01)
≥ 50.1 P for trend BMI ≥22.1 kg/m²	\rightarrow	≥50.1		2,070	17	0. 01	0.03
Study entry Nondrinkers 0.1–19.0	\rightarrow	Third examination Nondrinkers 0.1–19.0	}	13,598	116	1.00	1.00
29.1-29.0 29.1-50.0 ≥ 50.1 <i>P</i> for trend	\rightarrow \rightarrow	29.1–29.0 29.1–50.0 ≥50.1	J	2,056 4,744	8 33	0.46 (0.22–0.95) 1.01 (0.68–1.51) 0.69	0.43 (0.21–0.89) 0.94 (0.62–1.41) 0.64

Table. Relative risk of type 2 diabetes according to daily alcohol consumption

Tsumura K, et al. Diabetes Care. 22(9):1432-7,1999

Alcohol a population-based prospective study in the JPHC study cohort I

Alcohol consumption for self-reported diabetes among middle-

- age,913 Alea & 9,980 women, aged 40-59 years, followed for up to 10 years.
- participated in the JPHC Study Cohort I.

Table. Multivariate logistic regression analysis of the 10-year incidence of T2DM in middle-aged Japanese males according to BMI.

	$\frac{\text{BMI} \le 22 \text{ kg/m}^2 (n = 3845)}{\text{Odds ratio (95\% CI)}}$		$25 \text{ kg/m}^2 \ge (n = 5671)$	BMI > 22 kg/m ²	$BMI \ge 25 k_{i}$	$g/m^2 (n = 3397)$
			Odds ratio (95% CI)		Odds ratio (95% CI)	
Alcohol intake*						
ALC_0	1.00 (refere	nt)	1.00 (referent)		1.00 (referent)	
ALC_1	1.05	(0.55 - 2.01)	1.12	(0.80 - 1.56)	1.08	(0.79 - 1.48)
ALC_2	1.91	(1.05 - 3.46)	1.16	(0.83 - 1.61)	1.24	(0.89 - 1.71)
ALC_3	2.89	(1.63-5.11)	1.17	(0.83-1.66)	1.03	(0.73-1.44)

*Alcohol intake (g/day of ethanol):

ALC_1: $0 < \text{ethanol} \le 23.0$ ALC_2: 23.0 < ethanol ≤ 46.0 ALC_3: ethanol > 46.0 95% CI, 95% confidence interval. Adjusted for age, BMI, cigarette smoking, exercise, family history of diabetes and prevalent hypertension.

Alcohol consumption SUMMARY

Inconsistent results

J or U-shaped manner

Ajani UA, et al. Arch Intern Med. 160(7):1025-30, 2000 Carlsson S, et al. Diabet Med. 17(11):776-81, 2000 Carlsson S, et al. Diabetes Care. 26(10):2785-90, 2003 Beulens JW, et al. Diabetes Care. 28(12):2933-8, 2005 Carlsson S, et al. Diabetologia. 48(6):1051-4, 2005

No differences in RR reductions according to BMI

Koppes LL, et al. Diabetes Care. 28(3):719-25, 2005

Positive linear association

Sung KC, Kim SH, Reaven GM. Diabetes Care. 30(10):2690-4, 2007

No association

Waki K, et al. Diabet Med. 22(3):323-31, 2005

Adiponectin in the Korean population

The association between adiponectin and diabetes in the Korean population

• 4,459 healthy Koreans aged 24 to 87 years

Table. Multivariable-adjusted ORs for diabetes by tertile of waist, BMI, and adiponectin

Variables	Class	Diabetes	I	Men	Diabetes	Women	
		case	OR	95% CI	case	OR	95% CI
WC (cm)	<82.0	40	1.0		3	1.0	
	82.0-<88.5	71	1.0	0.6-1.6	12	2.2	0.5-9.4
	≥ 88.5	77	1.1	0.6-2.0	31	2.6	0.5-13.0
BMI (kg/m ²)	<23.5	43	1.0		5	1.0	
	23.5-<25.7	73	1.5	0.9-2.4	9	0.7	0.2-2.4
	≥25.7	72	1.3	0.7-2.3	32	1.2	0.3-4.4
Adiponectin	≥ 8.0	46	1.0		10	1.0	
$(\mu g/mL)$	5.0-<8.0	60	1.3	0.8-1.9	14	1.2	0.5-2.9
	<5.0	82	1.7	1.1-2.6	22	1.9	0.8-4.3

Model: adjusted for WC, BMI, adiponectin, age, smoking, hypertension, alcohol drinking, exercise, and HDL-C.

Yoon SJ, et al. Metabolism. 57(6):853-7, 2008

Adiponectin levels and risk of type 2 diabetes

- Systematic review and meta-analysis
- 13 prospective studies with a total of 14,598 participants and 2,623 incident cases of T2DM

Fig. Risk of T2DM According to categories of total adiponectin levels

Fig. Relative risks per 1 Log μ g/mL of adiponectin level and T2DM across studies

Size of squares corresponds to the weight of each study in the meta-analysis. CI indicates confidence interval.

Li S, et al. JAMA. 302(2):179-88, 2009

Fatty liver is an independent risk factor for T2DM in Korean

a G, 372 Snon-diabetic participants (3,670 men and 1,702 women; 20-79 years), 5 yrs F/U

Table. Risk factors of the incident		Relative risk	95% CI	P-value
T2DM in multiple logistic regression analysis	Sex (male vs. female) Current smoking	1.06 1.75	0.64–1.75 1.23–2.47	0.809
	Family history of DM	2.12	1.49-3.00	< 0.001
	Age (10 years)	1.26	1.04-1.53	0.019
	BMI (2.5 kg/m^2)	1.37	1.16-1.62	< 0.001
	ALT (quartile)	1.30	1.08-1.57	0.006
	Fasting glucose (quartile)	3.35	2.69-4.17	< 0.001
	Triglycerides (quartile)	1.07	0.89-1.28	0.474
	HDL cholesterol (quartile)	0.84	0.71-1.00	0.048
	Fatty liver	1.51	1.04-2.20	0.034

	Excluding frequent drinkers			
	Relative risk	95% CI	P-value	
Model 1*				
Fatty liver, mild	3.21	1.88-5.45	< 0.001	
Fatty liver, moderate to severe	8.47	4.93-14.58	< 0.001	
Model 2†				
Fatty liver, mild	1.87	1.03-3.38	0.039	
Fatty liver, moderate to severe	3.72	2.04-6.81	< 0.001	
Model 3‡				
Fatty liver, mild	1.49	0.82 - 2.71	0.19	
Fatty liver, moderate to severe	2.29	1.13-4.63	0.021	

*Model 1: adjusted for sex, age.
†Model 2: adjusted for the factors in Model 1 + F/H of DM, smoking, BP, FPG.
‡Model 3: adjusted for the factors in Model 2 + BMI, serum ALT, HDL-C, TG .

Table. Relative risks according to severity of fatty infiltration in liver after excluding

frequent drinkers

Kim CH, et al. Diabet Med. 25(4):476-81, 2008

Chronic hepatitis C virus infection

Association of chronic hepatitis C virus infection and DM in Korbspective analysis of 404 patients with chronic viral hepatitis or liver cirrhosis

Table. Prevalence of DM in patients with chronic hepatitis and liver cirrhosis

Groups	No. of patients	Age (meanSD,yrs)	No. of diabetics	р	(%):
Chronic hepatitis	225	44± 14	29(12.9%)	0.002	Setes
HBV	157	40± 12	13(8.2%)		diał
HCV	68	52± 16	16(23.5%)		ď
Liver cirthosis	179	56± 12	34(19.0%)	0.07	nce
HBV	102	52±11	14(13.7%)		N.
HCV	28	67±9	7(25%)		Pre
Akohol	43	58± 12	13(30.2%)		
Total	404	49± 15	63(15.6%)	0.001	
HBV	259	44± 13	27(10.4%)		Fi
HCV	96	56± 16	23(24.0%)		of

Fig. Prevalence of DM according to the etiology of chronic liver disease in 3 age group

Ryu JK, et al. Korean J Intern Med. 16(1):18-23, 2001

Algae consumption Korean national health and nutrition examination survey in 2005

Algae consumption and risk of type 2 diabetes

- Analyzed data from the Korean National Health and Nutrition Examination Survey in 2005
- 3,405 males and females aged 20-65 yrs.

Table. Algae consumption and risk of abnormal glucose metabolism.

Algae consumption Num	Number of	Number of prediabetes	Number of diabetes	Odds ratio (95% CI) for diabetes vs. prediabetes vs. normoglycemia		
	people			Model 1	Model 2	Model 3
Male						
Q1 (0-8.5)	274	62	15	1.000	1.000	1.00
Q2 (8.6–21.5)	383	77	10	0.76(0.52 - 1.11)	0.65(0.44 - 0.96)	0.64(0.43 - 0.95)
Q3 (21.6–32.8)	362	67	13	0.77 (0.53–1.12)	0.69(0.46 - 1.01)	0.68(0.46 - 1.01)
Q4 (over 32.9)	362	71	22	0.81(0.56 - 1.18)	0.67(0.46 - 0.98)	0.66(0.43 - 0.99)
Total	1,381	277	60	p for trend=0.351	p for trend=0.086	p for trend=0.088
Female						
Q1 (0-8.5)	370	42	11	1.000	1.000	1.000
Q2 (8.6–21.5)	538	54	13	0.95(0.64 - 1.42)	0.94(0.62 - 1.42)	0.93 (0.60–1.39)
Q3 (21.6–32.8)	477	49	6	0.89(0.58 - 1.36)	0.84(0.55 - 1.30)	0.77 (0.49–1.21)
Q4 (over 32.9)	606	59	11	0.91(0.61 - 1.35)	0.92(0.61 - 1.38)	0.80(0.51 - 1.24)
Total	1,991	204	41	<i>p</i> for trend=0.596	p for trend=0.624	p for trend=0.243

Model 1: adjusted for age, family history of diabetes, education, smoking, alcohol intake, and physical activity. Model 2: adjusted for variables in Model 1+total energy intake, body mass index, waist circumference, triglycerides. Model 3: adjusted for variables in Model 2+intakes of food groupsee HJ, et al. J Nutr Sci Vitaminol (Tokyo). 56(1):13-8, 2010

- GDM
- PCOS
- Persistent organic pollutants (POPs)
- Chronic arsenic poisoning
- Infections
- Oral contraceptives
- Uric acid
- WBC count
- Hematocrit
- C-reactive protein
- GGTP

• • • • • • • • • • • •

The diabetes risk score in Finland

A practical tool to predict type 2 diabetes risk

Table. Logistic regression models with drug-treated DM during F/U as the dependent variable

	Concise model: (194 of whom deve	n = 4,595 loped diabetes)	Full model: <i>n</i> (182 of whom deve		
	OR (95% CI)	Coefficient	OR (95% CI)	Coefficient	Score
Intercept	_	-5.514	_	-5.658	
Table 2—Diabetes incidence by Diabetes Risk Score	in 1987 and 1992 co	horts during follo	w-up through the year	r 1997	

		1987 Cohort						1992 Cohort					
		Men			Women		Men			Women			
	Diabete		abetes dence	j		ıbetes dence		Diabetes incidence			Diabetes incidence		
Score	n	п	%	п	п	%	п	n	%	п	n	%	
0–3	669	2	0.3	851	5	0.6	731	2	0.3	981	1	0.1	
4-8	936	22	2.4	878	11	1.3	863	7	0.8	862	3	0.4	
9–12	421	44	10.5	455	30	6.6	492	13	2.6	494	11	2.2	
13-20	101	33	32.7	124	35	28.2	78	18	23.1	85	12	14.1	
P for trend		0.001			0.001		0.001			0.001			

logistic regression model and are presented for the full model. The concise model includes only these statistically significant variables. The full model includes also physical activity and fruit and vegetable consumption. *Question "Have you ever used drugs for high blood pressure?: No/Yes" in the questionnaire; †question "Have you ever been told by a health-care professional that you have diabetes or latent diabetes?: No/Latent diabetes" in the questionnaire; †individuals who, in their spare time, "read, watch TV, and work in the household with tasks that don't strain physically" and whose "work is mainly done sitting and does not require much walking." The next category was "physical activity at least 4 hours per week."

Lindström J, Tuomilehto J. Diabetes Care. 26(3):725-31, 2003

The diabetes risk score in the Thai population

A risk score for predicting incident diabetes

SUMMARY

Diverse risk factors?

■ Ethnic differences? : 대동소이(大同小異, substantial identity with negligible differences)

Is Korean a high risk population for type 2 diabetes?

 \rightarrow YES !!!?